

Propagation of Errors in Evironmental Measurements

Chung-Rei Mao USACE HTRW CX (402) 697-2570

May 11, 1999

Importance of Error Analysis

- ► How accurate are the data? Do I care?
- Data ----> Decisions
 - Are the data good enough?
 - How do I know if data are good enough?
- Data of unknown quality are next to useless.

Example

► Is 12 ppm > 10 ppm?

No, 12±5 ppm ≯ 10.0 ppm at 95% confidence level.

► Is 10.2 ppm > 10 ppm?

Yes, 10.2 ± 0.1 ppm > 10.0 ppm at 95% confidence level.

Data of unknown quality cannot be compared.

Type of Errors

- Systematic Errors: Always same sign and magnitude and produce biases.
- Random Errors: Vary and unpredictable in sign and magnitude.
- Blunders: Simply mistakes that occur on occasion and produce erroneous results.

Detectable Errors

Errors can be detected by a data reviewer:

- Planning errors
- Sampling or field errors
- Analytical or lab errors
- Reporting errors

Nondetectable Errors

Errors cannot be detected by a data reviewer:

- Random errors
- Indeterminate errors
 - Analyte loss to container
 - Sample contaminations
 - Undocumented change of sampling coordinates

Detection of Errors

- Apply common sense
 - Do data look suspicious?
 - Are data internal consistent?
 - Were plans/procedures properly adapted?
- Compare data with criteria and background
 - Laws and regs.
 - Plans and SOPs
 - Results and reports
 - Site description

Features of Environmental Chemical Analysis

- Single discrete or composite sample
- Large number of target analytes
- Complicated sample matrices
- Limited method performance data
- Method QCs are appropriate for controlling and describing method performance for samples of similar matrices.
- Decision might be based on comparison of data of vague quality with action levels.

Error Analysis

- ▶ DQO ---> MQO ---> DQI
- MQO: Data Validation ---> PARCC
- DQI: MDL, Bias, and Precision
- Field Sampling Errors and Lab Errors

Acceptable Decision Errors

Analytical Errors

MDL and MQL

- MDL: 40 CFR 136, Appendix B;
 7 replicates in a clean or sample matrix.
- 2. MDL Check Samples: 2 times MDL on a quarterly basis.
- 3. Uncertainty: $\approx \pm (100 \div n)\%$ for analytes at concentrations of n times MDLs.
- 4. MQL: 5 10 times MDL depending on calibration error.

Control Charts

- 1. Establish control limits for all LCSs based on a minimum of 40 data points and demonstrate that a lab is under statistical control.
- 2. Shell: Control and report data quality based on LCS control limits.
- 3. Default LCS control limits (Also refer Method Compendium):

Organics: %R = 30 - 150%; $%D = \le 40\%$. Inorganics: %R = 70 - 130%; $%D = \le 25\%$.

4. Published limits shall be used if tighter, and lab shall demonstrate their performance.

Sampling Errors

- Pierre Gy's "Sampling Theory and Sampling Practice."
- Overall Error = Field Sampling Errors + Lab Errors
- ► Field Sampling Errors
 - Fundamental Error (FE)
 - Grouping and Segregation Error (GE)
- Lab Errors
 - Sample Preparation Error (PE)
 - Analytical error (AE)

Field Sampling Errors

- Fundamental Error (FE):
 - Resulted from constitution heterogeneity of samples.
 - Always there even with perfect sampling.
 - Approximately half of sampling error.
 - The only error that can be estimated.
- Grouping and Segregation Error (GE):
 - Resulted from distribution heterogeneity of samples.
 - Assumed to be equal to the FE.
 - All sample preparation efforts are designed to minimize this error.

The relationship between fundamental errors (FE), sample size, and particle size is:

$$S = (18 * f * e * d^3 / Ms)^(1/2)$$

where

S: RSD of analyte concentration due to FE.

f: dimensionless factor of particle shape.

e: average density, assumed to be 2.5 g/cc.

d: the diameter of the largest particle in cm

Ms: the mass of sample in gram.

"f" factor for different particle shapes

Particle Shape	f
Cubic	1
Spheres	0.5
Flakes	0.1
Needles	>1 to ≤10
Soft solids shaped	0.2
by mechanical stress	

Assuming spherical soil particles, the largest particle size that can be representatively accommodated by a given subsample mass and given fundamental error can be calculated as follows.

$$d = (Ms * S^2 / 22.5)^(1/3)$$

Sample	Sieve	particle size (cm)		
Mass (g)	Size	5%RSD	10%RSD	15%RSD
0.1	35	0.02	0.04	0.05
1	18	0.05	0.08	0.10
2	13	0.06	0.10	0.13
5	12	0.08	0.13	0.17
10	10	0.10	0.16	0.22
50	6	0.18	0.28	0.37
		19		

- ► Rule of thumb ---> "S(FE) < 15%" (as %RSD)</p>
- If the diameter of the largest particle in the soil to be sampled is known, the sample weight controls the FE.
 - If d = 0.8 cm, for a 100 g sample, S(FE) = 34%
 - If d = 0.8 cm, for a 500 g sample, S(FE) = 15%
 - when sampling this soil media, samples should exceed 500 g.

Source: F. F. Pitard, "Pierre Gy's Sampling Theory and Sampling Practice"

21

Weight M_S in grams

Lab Errors

- Sample Preparation Error (PE):
 - Potentially the largest and most often neglected error.
 - To minimize, reduce particle size and heterogeneity.
- Analytical Error (AE):
 - Generally the smallest error when lab is in control, but the greatest amount of money and effort in project QC is focused on.
 - To minimize, use GLP and QA/QC.

Comparison with Reg. Level

If $FP \le 2.5\%$, B = -20%, $P = \pm 10\%$

Comparison with Bkgd. Level

If $FP \le 2.5\%$, B = -20%, $P = \pm 30\%$

Conclusions

- ► A simple process to assess sampling and analysis errors. (Allocating 75% of data budget to reduce analytical error from 25% to 15% is not fruitful if the sampling error is 80%.)
- ► A consistent way to express method performance and data quality in quantitative terms.
- A straightforward approach to select appropriate methods and generate data of known and adequate quality.